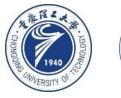


Chongqing University of Technology

ATAI Advanced Technique of Artificial Intelligence

Artificial


Enhancing Intrinsic Features for Debiasing via Investigating Class-Discerning Common Attributes in Bias-Contrastive Pair

Jeonghoon Park^{*1}, Chaeyeon Chung^{*1}, Juyoung Lee², Jaegul Choo¹ ¹Korea Advanced Institute of Science and Technology, South Korea, ²Kakao Brain, South Korea.

Code: None

— CVPR 2024

2024. 5. 16 • ChongQing

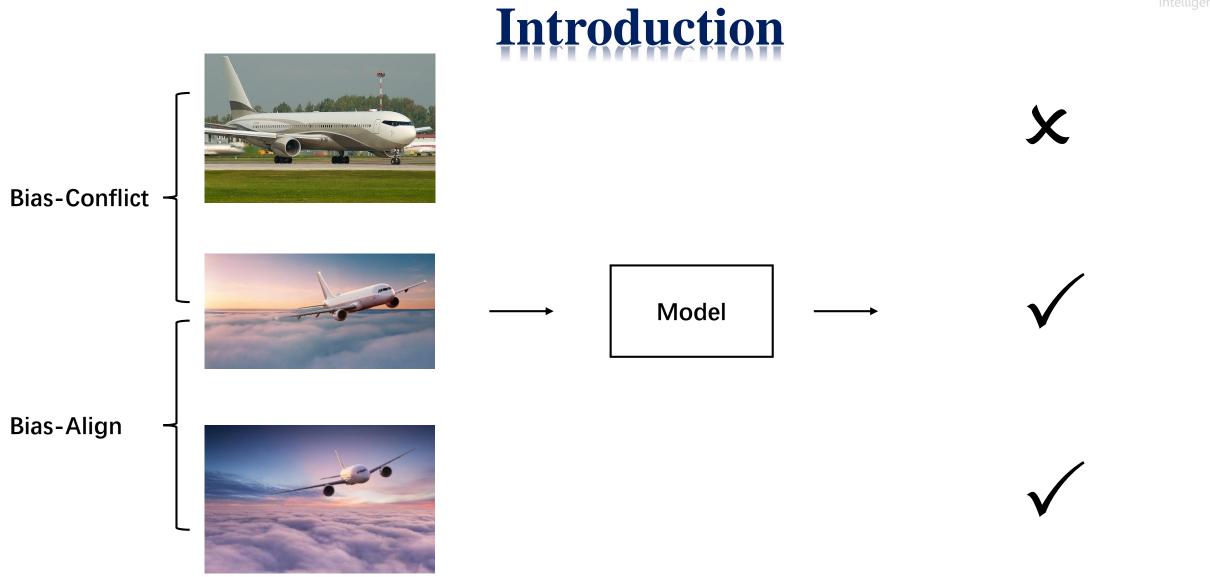
Chongqing University of Technology

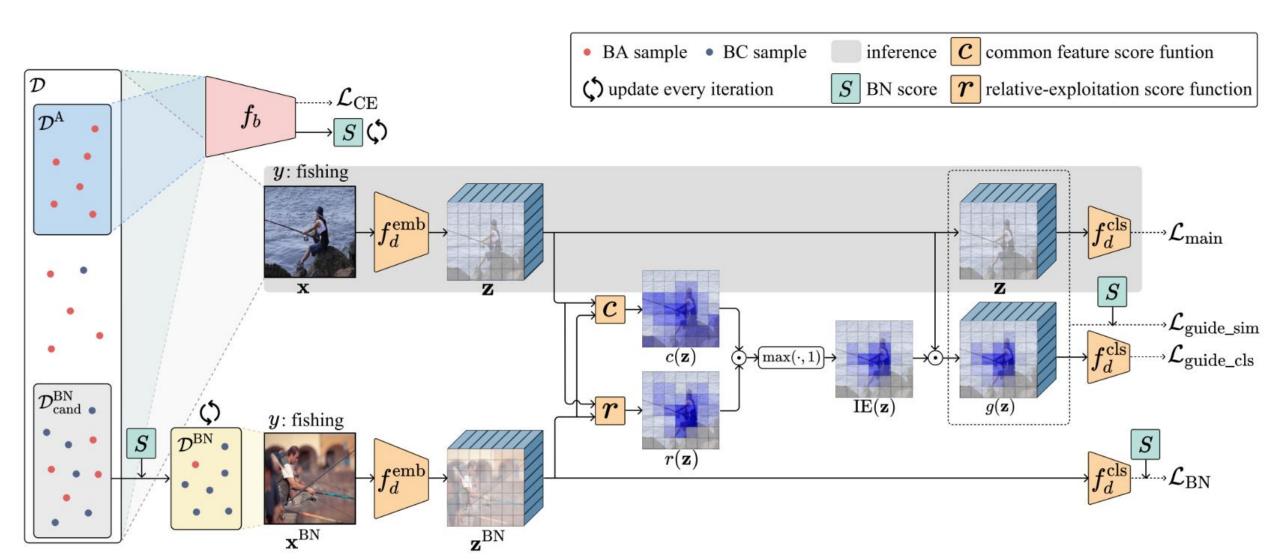

ATAI Advanced Technique of Artificial Intelligence Artificial

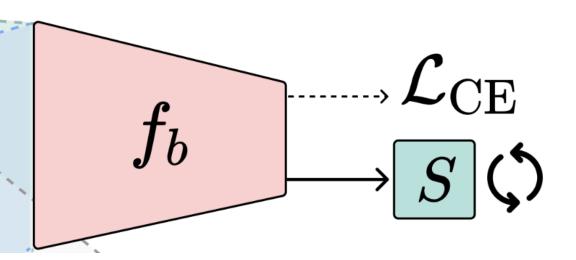
1.Introduction

2.Overview

3.Methods



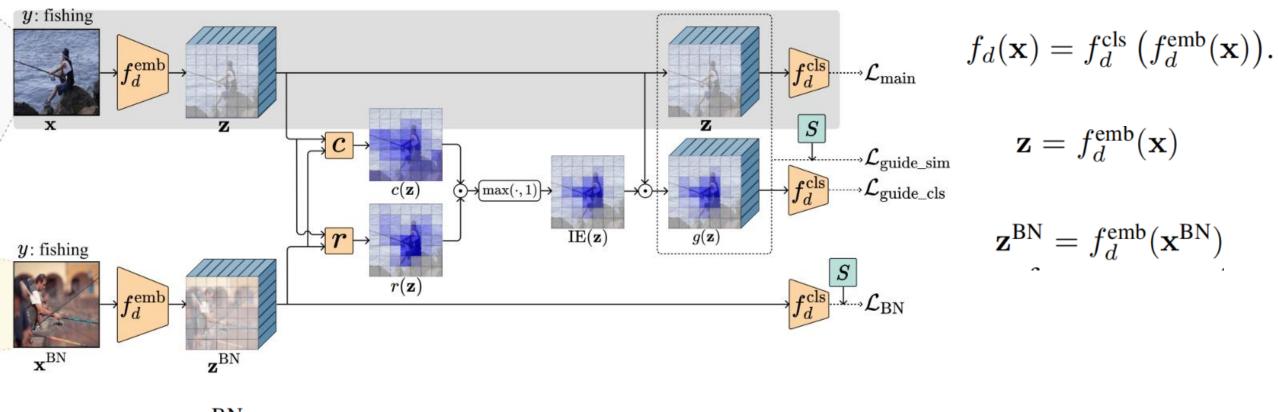



Overview

$$l_t(\mathbf{x}) = \alpha_l \cdot \mathcal{L}_{CE}(f_b(\mathbf{x}), y) + (1 - \alpha_l) \cdot l_{t-1}(\mathbf{x}), \quad (1)$$

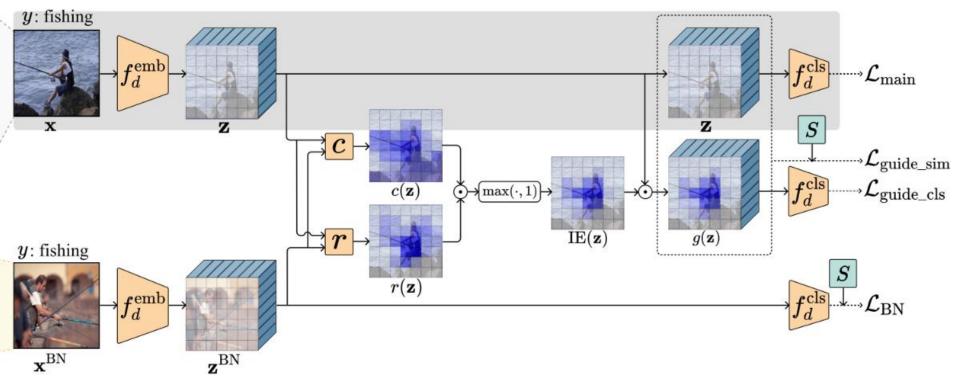
$$s_t(\mathbf{x}) = \alpha_s \cdot (l_t(\mathbf{x}) - l_{\text{ref}}(\mathbf{x})) + (1 - \alpha_s) \cdot s_{t-1}(\mathbf{x}), \quad (2)$$

$$\mathcal{D}_t^{\text{BN}} = \{ \mathbf{x} \mid s_t(\mathbf{x}) > 0, \mathbf{x} \sim \mathcal{D}_{\text{cand}}^{\text{BN}} \},$$
(3)

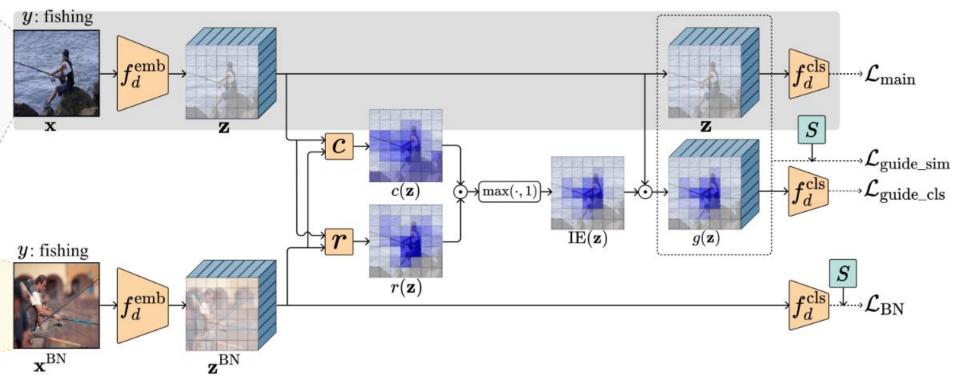

ı

(5)

,



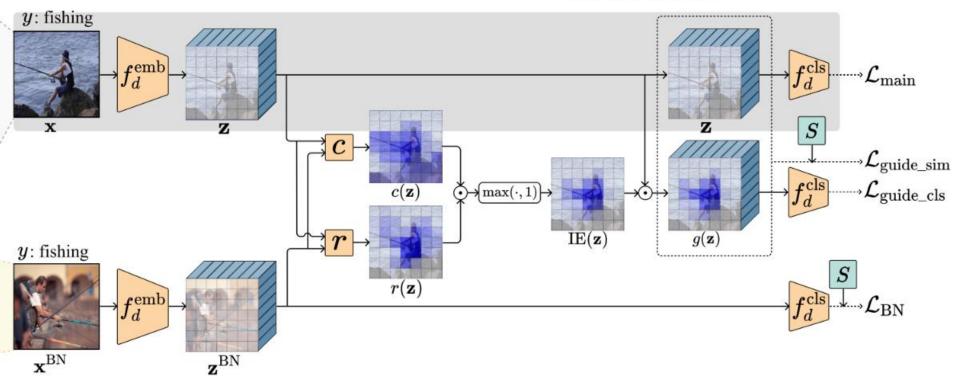
$$c(\mathbf{z})_{n} = \frac{\mathbf{z}_{i^{*}}^{\mathrm{BN}} \cdot \mathbf{z}_{n}}{\max_{i,j}(\mathbf{z}_{i}^{\mathrm{BN}} \cdot \mathbf{z}_{j})}, \qquad (4) \qquad r(\mathbf{z})_{n} = \left(\frac{2\mathrm{E}(\mathbf{z}^{\mathrm{BN}})_{i^{*}}}{\mathrm{E}(\mathbf{z}^{\mathrm{BN}})_{i^{*}} + \mathrm{E}(\mathbf{z})_{n}}\right)^{\tau}$$
$$i^{*} = \arg\max\left(\mathbf{z}_{i}^{\mathrm{BN}} \cdot \mathbf{z}_{n}\right)$$



 $\operatorname{IE}(\mathbf{z})_n = \max(c(\mathbf{z})_n \odot r(\mathbf{z})_n, 1), \tag{6}$

 $g(\mathbf{z}) = \mathbf{z} \odot \mathrm{IE}(\mathbf{z}). \tag{7}$

 $\mathcal{L}_{\text{main}} = w(\mathbf{x})\mathcal{L}_{\text{CE}}(f_d(\mathbf{x}), y)$ (8)

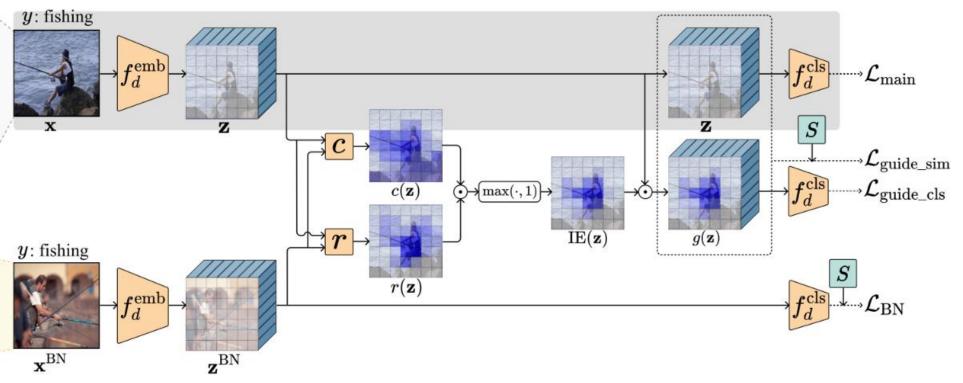

$$w(\mathbf{x}) = \frac{\mathcal{L}_{CE}(f_b(\mathbf{x}), y)}{\mathcal{L}_{CE}(f_b(\mathbf{x}), y) + \mathcal{L}_{CE}(f_d(\mathbf{x}), y)}.$$
 (14)

$$\mathcal{L}_{guide_sim} = s(\mathbf{x}^{BN}) \| GAP(\mathbf{z}) - GAP(g(\mathbf{z})) \|_{1}, \quad (9)$$

$$\mathcal{L}_{\text{guide_cls}} = w(\mathbf{x}) \mathcal{L}_{\text{CE}} \left(f_d^{\text{cls}}(g(\mathbf{z})), y \right), \qquad (10)$$

 $\mathcal{L}_{\text{main}} = w(\mathbf{x})\mathcal{L}_{\text{CE}}(f_d(\mathbf{x}), y)$ (8)

$$w(\mathbf{x}) = \frac{\mathcal{L}_{CE}(f_b(\mathbf{x}), y)}{\mathcal{L}_{CE}(f_b(\mathbf{x}), y) + \mathcal{L}_{CE}(f_d(\mathbf{x}), y)}.$$
 (14)

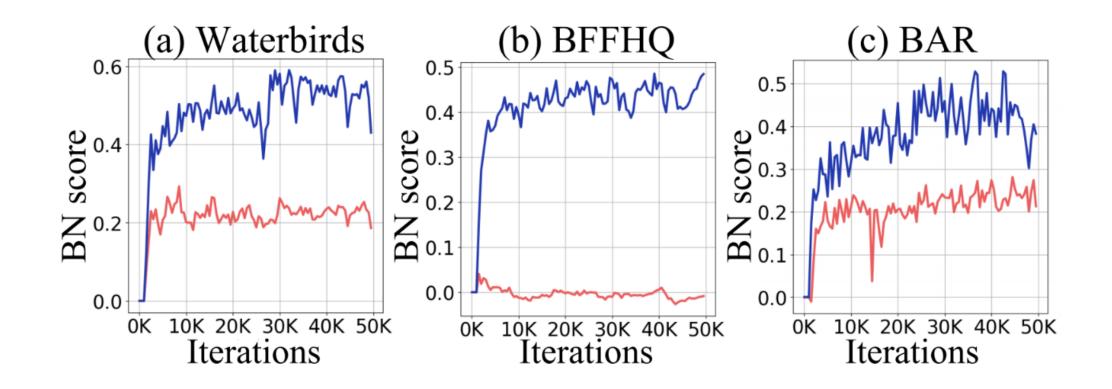

$$\mathcal{L}_{\text{guide_sim}} = s(\mathbf{x}^{\text{BN}}) \| \text{GAP}(\mathbf{z}) - \text{GAP}(g(\mathbf{z})) \|_{1}, \quad (9)$$

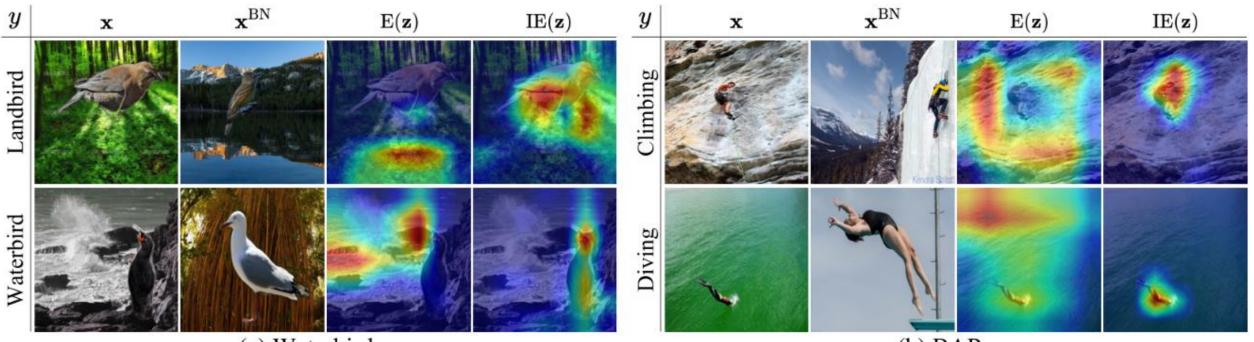
$$\mathcal{L}_{\text{guide_cls}} = w(\mathbf{x}) \mathcal{L}_{\text{CE}} \left(f_d^{\text{cls}}(g(\mathbf{z})), y \right), \qquad (10)$$

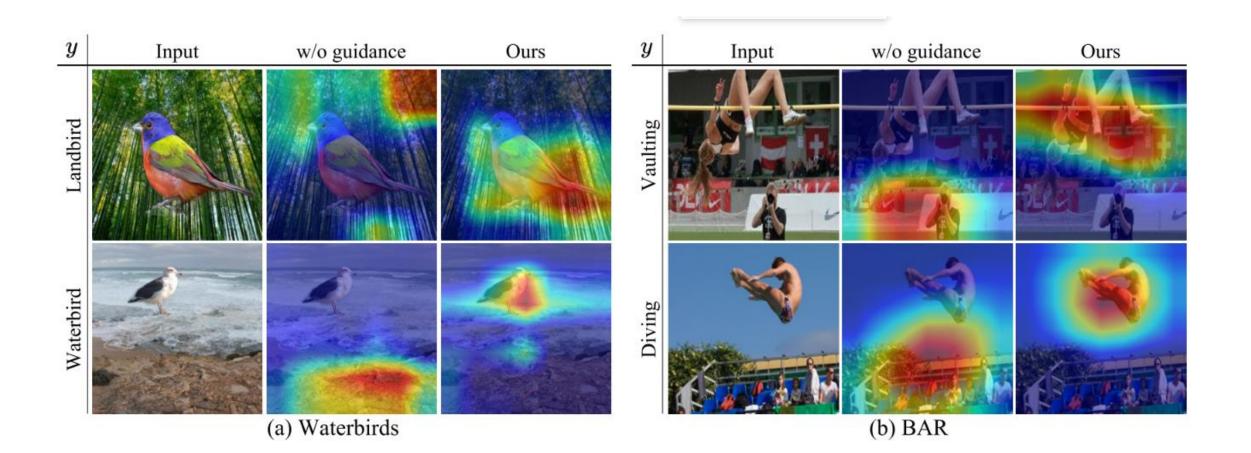
$$\mathcal{L}_{guide} = \lambda_{sim} \mathcal{L}_{guide_sim} + \mathcal{L}_{guide_cls}, \qquad (11)$$

 $\mathcal{L}_{\rm BN} = s(\mathbf{x}^{\rm BN}) \mathcal{L}_{\rm CE}(f_d(\mathbf{x}^{\rm BN}), y).$ (12)

 $\mathcal{L}_{\text{total}} = \lambda_{\text{main}} \mathcal{L}_{\text{main}} + \mathcal{L}_{\text{guide}} + \mathcal{L}_{\text{BN}}, \qquad (13)$

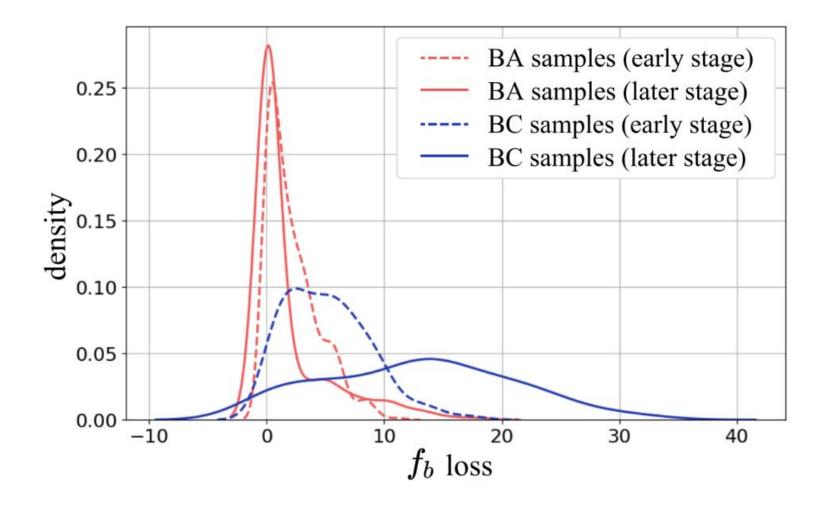

Method	Waterbirds				BFFHQ				BAR	
	0.5	1.0	2.0	5.0	0.5	1.0	2.0	5.0	1.0	5.0
Vanilla [5]	57.41	58.07	61.04	64.13	55.64	60.96	69.00	82.88	70.55	82.53
HEX [25]	57.88	58.28	61.02	64.32	56.96	62.32	70.72	83.40	70.48	81.20
LNL [9]	58.49	59.68	62.27	66.07	56.88	62.64	69.80	83.08	-	-
EnD [22]	58.47	57.81	61.26	64.11	55.96	60.88	69.72	82.88	-	-
ReBias [2]	55.44	55.93	58.53	62.14	55.76	60.68	69.60	82.64	73.04	83.90
LfF [15]	60.66	61.78	58.92	61.43	65.19	69.24	73.08	79.80	70.16	82.95
DisEnt [12]	59.59	60.05	59.76	64.01	62.08	66.00	69.92	80.68	70.33	83.13
LfF+BE [13]	61.22	62.58	63.00	63.48	67.36	75.08	80.32	85.48	73.36	83.87
DisEnt+BE [13]	51.65	54.10	53.43	54.21	67.56	73.48	79.48	84.84	73.29	84.96
Ours	63.64	65.22	65.23	66.33	71.68	77.56	83.08	87.60	75.14	85.03


	$\mathcal{D}_{ ext{cand}}^{ ext{BN}}$ -	$\mathcal{D}^{\mathrm{BN}}$	$\mathcal{D}^{\mathrm{BN}}/\mathcal{D}$ (%)			
Dataset	BA	BC	BA	BC		
Waterbirds	$26.50{\scriptstyle~\pm 5.32}$					
BFFHQ	199.80 ± 40.14					
BAR	30.60 ± 3.83	3.20 ± 1.60	3.58 ± 0.14	$47.14{\scriptstyle~\pm5.71}$		


Experiments

(a) Waterbirds

(b) BAR



$\mathcal{L}_{ ext{guide}}$	$\mathcal{L}_{\mathrm{BN}}$	\mathbf{x}^{BN}	$s(\mathbf{x}^{\mathrm{BN}})$ as loss weight	Waterbirds	BFFHQ	BAR
~	\checkmark	$\mid \mathcal{D}$	× × ×	$62.79{\scriptstyle~\pm1.21}$	71.04 ± 2.55	$73.36{\scriptstyle~\pm1.40}$
\checkmark	\checkmark	$\mathcal{D}_{ ext{cand}}^{ ext{BN}}$	×	64.65 ± 1.23	$75.64{\scriptstyle~\pm1.87}$	74.27 ± 0.66
✓	\checkmark	\mathcal{D}^{BN}	×	$65.10{\scriptstyle~\pm 0.87}$	77.08 ± 2.05	$74.62{\scriptstyle~\pm1.07}$
×	\checkmark	$\mathcal{D}^{\mathrm{BN}}$	\checkmark	63.81 ±1.24	$76.92{\scriptstyle~\pm1.03}$	$74.03{\scriptstyle~\pm1.13}$
\checkmark	X	$\mathcal{D}^{ ext{BN}}$ $\mathcal{D}^{ ext{BN}}$	\checkmark	62.10 ±3.35	74.84 ± 2.00	$74.87{\scriptstyle~\pm1.51}$
\checkmark	\checkmark	$\mathcal{D}^{\mathrm{BN}}$	\checkmark	$\textbf{65.22} \pm 0.95$	77.56 ±1.24	$\textbf{75.14} \pm 0.82$

#BC in \mathcal{D}^{BN} /#BC in \mathcal{D} #BA in \mathcal{D}^{BN} /#BC in \mathcal{D}^{BN}	0.1	0.5	1.0	1.0	1.0	1.0	1.0
#BA in \mathcal{D}^{BN} /#BC in \mathcal{D}^{BN}	0.0	0.0	0.0	0.1	1.0	2.0	10.0
Accuracy	75.84	78.12	81.40	80.24	77.48	75.48	70.90

BS Vanilla [5]	HEX [25]	LNL [9]	EnD [22]	ReBias [2]	LfF [15]	DisEnt [12]	LfF+BE [13]	DisEnt+BE [13]	Ours
$0.5 \mid 24.08 \pm 1.56$	$28.20{\scriptstyle~\pm3.07}$	26.08 ± 1.64	$28.29{\scriptstyle~\pm3.53}$	$27.00{\scriptstyle~\pm1.10}$	$56.22{\scriptstyle~\pm 6.07}$	38.07 ± 11.01	55.15 ± 2.78	36.60 ± 10.88	$59.12{\scriptstyle~\pm3.67}$
1.0 24.78 ±2.45	$26.32{\scriptstyle~\pm 2.90}$	$29.72{\scriptstyle~\pm3.45}$	$25.69{\scriptstyle~\pm 2.41}$	27.95 ±1.56	59.07 ±3.40	47.02 ±7.26	55.53 ±1.60	28.35 ±4.17	63.05 ± 1.97
$2.0 \mid 34.39 \pm \scriptscriptstyle 2.24$	32.12 ±2.89	$33.92{\scriptstyle~\pm1.94}$	$32.94{\scriptstyle~\pm1.48}$	32.16 ±0.76	53.07 ±6.74	$44.93{\scriptstyle~\pm 8.54}$	52.91 ±2.62	$31.08 \pm \scriptscriptstyle 6.01$	61.71 ±4.94
5.0 38.34 ±1.05	39.08 ± 0.92	$43.22{\scriptstyle~\pm1.94}$	40.91 ± 1.11	39.72 ±1.11	58.05 ± 2.37	52.96 ±6.33	48.48 ±3.72	$37.92{\scriptstyle~\pm 6.47}$	$58.60{\scriptstyle~\pm3.32}$

(a) Waterbirds

(b) BFFHQ

(c) BAR

Thanks!